Decomposing Berge graphs and detecting balanced skew partitions
We prove that the problem of deciding whether a graph has a balanced skew partition is NP-hard. We give an O(n9)-time algorithm for the same problem restricted to Berge graphs. Our algorithm is not constructive : it certifies that a graph has a balanced skew partition if it has one. It relies on a new decomposition theorem for Berge graphs, that is more precise than the previously known theorems and implies them easily. Our theorem also implies that every Berge graph can be decomposed in a first step by using only balanced skew partitions, and in a second step by using only 2-joins. Our proof of this new theorem uses at an essential step one of the decomposition theorems of Chudnovsky.