EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"stochastic differential eqn."
Narrow search

Narrow search

Year of publication
Subject
All
Chapman-Kolmogorov eqn. 2 Ito process 2 martingale 2 memory 2 nonMarkov process 2 stochastic differential eqn. 2 2 backward time diffusion 1 Black- Scholes eqn 1 Black-Scholes eqn 1 Fokker-Planck 1 Fokker-Planck eqn. 1 Kolmogorov’s backward time eqn. 1 Kolmogorov’s partial differential eqns. 1 Langevin eqn. 1 Stochastic process 1
more ... less ...
Online availability
All
Free 2
Type of publication
All
Book / Working Paper 2
Language
All
Undetermined 2
Author
All
McCauley, Joseph L. 2
Institution
All
Volkswirtschaftliche Fakultät, Ludwig-Maximilians-Universität München 2
Published in...
All
MPRA Paper 2
Source
All
RePEc 2
Showing 1 - 2 of 2
Cover Image
Fokker-Planck and Chapman-Kolmogorov equations for Ito processes with finite memory
McCauley, Joseph L. - Volkswirtschaftliche Fakultät, … - 2007
The usual derivation of the Fokker-Planck partial differential eqn. (pde) assumes the Chapman-Kolmogorov equation for a Markov process [1,2]. Starting instead with an Ito stochastic differential equation (sde), we argue that finitely many states of memory are allowed in Kolmogorov’s two pdes,...
Persistent link: https://www.econbiz.de/10005837217
Saved in:
Cover Image
Ito Processes with Finitely Many States of Memory
McCauley, Joseph L. - Volkswirtschaftliche Fakultät, … - 2007
We show that Ito processes imply the Fokker-Planck (K2) and Kolmogorov backward time (K1) partial differential eqns. (pde) for transition densities, which in turn imply the Chapman-Kolmogorov equation without approximations. This result is not restricted to Markov processes. We define ‘finite...
Persistent link: https://www.econbiz.de/10005260138
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...