Showing 1 - 10 of 174
We revisit the classic semiparametric problem of inference on a low di-mensional parameter Ø0 in the presence of high-dimensional nuisance parameters π0. We depart from the classical setting by allowing for π0 to be so high-dimensional that the traditional assumptions, such as Donsker...
Persistent link: https://www.econbiz.de/10011655554
Most modern supervised statistical/machine learning (ML) methods are explicitly designed to solve prediction problems very well. Achieving this goal does not imply that these methods automatically deliver good estimators of causal parameters. Examples of such parameters include individual...
Persistent link: https://www.econbiz.de/10011538313
We propose strategies to estimate and make inference on key features of heterogeneous effects in randomized experiments. These key features include best linear predictors of the effects using machine learning proxies, average effects sorted by impact groups, and average characteristics of most...
Persistent link: https://www.econbiz.de/10011775335
High-dimensional linear models with endogenous variables play an increasingly important role in recent econometric literature. In this work we allow for models with many endogenous variables and many instrument variables to achieve identification. Because of the high-dimensionality in the second...
Persistent link: https://www.econbiz.de/10011775296
This paper considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by p, is possibly much larger than the sample size n. There is a variety of economic applications where solving this problem allows to carry out inference on causal and...
Persistent link: https://www.econbiz.de/10011919986
In this paper, we derive new, nearly optimal bounds for the Gaussian approximation to scaled averages of n independent high-dimensional centered random vectors X1, . . . , Xn over the class of rectangles in the case when the covariance matrix of the scaled average is non-degenerate. In the case...
Persistent link: https://www.econbiz.de/10012482915
Quantile regression (QR) is a principal regression method for analyzing the impact of covariates on outcomes. The impact is described by the conditional quantile function and its functionals. In this paper we develop the nonparametric QR-series framework, covering many regressors as a special...
Persistent link: https://www.econbiz.de/10011525883
We give a general construction of debiased/locally robust/orthogonal (LR) moment functions for GMM, where the derivative with respect to first step nonparametric estimation is zero and equivalently first step estimation has no effect on the influence function. This construction consists of...
Persistent link: https://www.econbiz.de/10011824067
We provide adaptive inference methods for linear functionals of L1-regularized linear approximations to the conditional expectation function. Examples of such functionals include average derivatives, policy effects, average treatment effects, and many others. The construction relies on building...
Persistent link: https://www.econbiz.de/10011804936
This chapter presents key concepts and theoretical results for analyzing estimation and inference in high-dimensional models. High-dimensional models are characterized by having a number of unknown parameters that is not vanishingly small relative to the sample size. We first present results in...
Persistent link: https://www.econbiz.de/10011865610