Showing 1 - 6 of 6
This article describes a versatile family of functions increasingly roughened by successive interpolations. They provide models of the variation of financial prices. More importantly, they are helpful "cartoons" of Brownian motions in multifractal time, BMMT, which are better models described in...
Persistent link: https://www.econbiz.de/10005593162
A new class of random multiplicative and statistically self-similar measures is defned on IR. It is the limit of measure-valued martingales constructed by multiplying random functions attached to the points of a statistically self-similar Poisson point process in a strip of the plane. Several...
Persistent link: https://www.econbiz.de/10005593495
The Multifractal Model of Asset Returns ("MMAR," see Mandelbrot, Fisher, and Calvet, 1997) proposes a class of multifractal processes for the modelling of financial returns. In that paper, multifractal processes are defined by a scaling law for moments of the processes' increments over finite...
Persistent link: https://www.econbiz.de/10005463933
Persistent link: https://www.econbiz.de/10005593395
This paper presents the multifractal model of asset returns ("MMAR"), based upon the pioneering research into multifractal measures by Mandelbrot (1972, 1974). The multifractal model incorporates two elements of Mandelbrot's past research that are now well-known in finance. First, the MMAR...
Persistent link: https://www.econbiz.de/10005249160
This paper presents the first empirical investigation of the Multifractal Model of Asset Returns ("MMAR"). The MMAR, developed in Mandelbrot, Fisher, and Calvet (1997), is an alternative to ARCH-type representations for modelling temporal heterogeneity in financial returns. Typically,...
Persistent link: https://www.econbiz.de/10005249164