Showing 1 - 10 of 161
The application of traditional forecasting methods to discrete count data yields forecasts that are non-coherent. That is, such methods produce non-integer point and interval predictions which violate the restrictions on the sample space of the integer variable. This paper presents a methodology...
Persistent link: https://www.econbiz.de/10005149090
We propose an innovations form of the structural model underlying exponential smoothing that is further augmented by a latent Markov switching process. A particular case of the new model is the local level model with a switching drift, where the switching component describes the change between...
Persistent link: https://www.econbiz.de/10005125286
The object of this paper is to produce distributional forecasts of physical volatility and its associated risk premia using a non-Gaussian, non-linear state space approach. Option and spot market information on the unobserved variance process is captured by using dual 'model-free' variance...
Persistent link: https://www.econbiz.de/10008763558
A new approach to inference in state space models is proposed, based on approximate Bayesian computation (ABC). ABC avoids evaluation of the likelihood function by matching observed summary statistics with statistics computed from data simulated from the true process; exact inference being...
Persistent link: https://www.econbiz.de/10010958938
The impact of parameterisation on the simulation efficiency of Bayesian Markov chain Monte Carlo (MCMC) algorithms for two non-Gaussian state space models is examined. Specifically, focus is given to particular forms of the stochastic conditional duration (SCD) model and the stochastic...
Persistent link: https://www.econbiz.de/10005581163
In this paper, a Bayesian version of the exponential smoothing method of forecasting is proposed. The approach is based on a state space model containing only a single source of error for each time interval. This model allows us to improve current practices surrounding exponential smoothing by...
Persistent link: https://www.econbiz.de/10005125279
The segmentation problem arises in many applications in data mining, A.I. and statistics. In this paper, we consider segmenting simple time series. We develop two Bayesian approaches for segmenting a time series, namely the Bayes Factor approach, and the Minimum Message Length (MML) approach. We...
Persistent link: https://www.econbiz.de/10005149025
This paper develops a new non-linear model to analyse the business cycle by exploiting the relationship between the asymmetrical behaviour of the cycle and leading indicators. The model proposed is an innovations form of the structural model underlying simple exponential smoothing that is...
Persistent link: https://www.econbiz.de/10005149035
We evaluate the performance of various methods for forecasting tourism demand. The data used include 380 monthly series, 427 quarterly series and 530 yearly series, all supplied to us by tourism bodies or by academics from previous tourism forecasting studies. The forecasting methods implemented...
Persistent link: https://www.econbiz.de/10005427605
We review the past 25 years of time series research that has been published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985; International Journal of Forecasting 1985-2005). During this period, over one third of all papers published in these...
Persistent link: https://www.econbiz.de/10005427625