Showing 1 - 10 of 256
We provide a new asymptotic theory for local time density estimation for a general class of functionals of integrated time series. This result provides a convenient basis for developing an asymptotic theory for nonparametric cointegrating regression and autoregression. Our treatment directly...
Persistent link: https://www.econbiz.de/10005464027
Nonparametric estimation of a structural cointegrating regression model is studied. As in the standard linear cointegrating regression model, the regressor and the dependent variable are jointly dependent and contemporaneously correlated. In nonparametric estimation problems, joint dependence is...
Persistent link: https://www.econbiz.de/10005593511
We provide a limit theory for a general class of kernel smoothed U statistics that may be used for specification testing in time series regression with nonstationary data. The framework allows for linear and nonlinear models of cointegration and regressors that have autoregressive unit roots or...
Persistent link: https://www.econbiz.de/10008790283
Persistent link: https://www.econbiz.de/10010500889
Persistent link: https://www.econbiz.de/10012704812
Persistent link: https://www.econbiz.de/10001652633
Persistent link: https://www.econbiz.de/10001728184
Nonparametric estimation of a structural cointegrating regression model is studied. As in the standard linear cointegrating regression model, the regressor and the dependent variable are jointly dependent and contemporaneously correlated. In nonparametric estimation problems, joint dependence is...
Persistent link: https://www.econbiz.de/10014217972
This paper develops an asymptotic theory for near-integrated random processes and some associated regressions when the errors are tempered linear processes. Tempered processes are stationary time series that have a semi-long memory property in the sense that the autocovariogram of the process...
Persistent link: https://www.econbiz.de/10012919164
We examine a kernel regression smoother for time series that takes account of the error correlation structure as proposed by Xiao et al. (2008). We show that this method continues to improve estimation in the case where the regressor is a unit root or near unit root process
Persistent link: https://www.econbiz.de/10013083002