Showing 1 - 10 of 265
Quantile regression (QR) fits a linear model for conditional quantiles just as ordinary least squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that it gives the minimum mean-squared error linear approximation to the conditional expectation function even...
Persistent link: https://www.econbiz.de/10005702363
Persistent link: https://www.econbiz.de/10006964075
In this paper we develop a new censored quantile instrumental variable (CQIV) estimator and describe its properties and computation. The CQIV estimator combines Powell (1986) censored quantile regression (CQR) to deal with censoring, with a control variable approach to incorporate endogenous...
Persistent link: https://www.econbiz.de/10011209287
In the first part of the paper, we consider estimation and inference on policy relevant treatment effects, such as local average and local quantile treatment effects, in a data-rich environment where there may be many more control variables available than there are observations. In addition to...
Persistent link: https://www.econbiz.de/10010827534
This paper considers identification and estimation of ceteris paribus effects of continuous regressors in nonseparable panel models with time homogeneity. The effects of interest are derivatives of the average and quantile structural functions of the model. We find that these derivatives are...
Persistent link: https://www.econbiz.de/10010739824
Persistent link: https://www.econbiz.de/10008491501
Quantile regression (QR) is an increasingly important empirical tool in economics and other sciences for analysing the impact a set of regressors has on the conditional distribution of an outcome. Extremal QR, or QR applied to the tails, is of interest in many economic and financial...
Persistent link: https://www.econbiz.de/10009148353
Counterfactual distributions are important ingredients for policy analysis and de-composition analysis in empirical economics. In this article we develop modelling and inference tools for counterfactual distributions based on regression methods. The counterfactual scenarios that we consider...
Persistent link: https://www.econbiz.de/10010660012
We consider estimation of policy relevant treatment effects in a data-rich environment where there may be many more control variables available than there are observations. In addition to allowing many control variables, the setting we consider allows heterogeneous treatment effects, endeogenous...
Persistent link: https://www.econbiz.de/10010712644
Persistent link: https://www.econbiz.de/10008335861