Showing 1 - 10 of 21
This paper shows an explicit small time expansion formula of expectation of the solution to Young SDEs driven by fractional Brownian motion H1/2. The expansion coefficients are obtained by using Malliavin calculus for fractional Brownian motion. Furthermore, we show an analytically tractable...
Persistent link: https://www.econbiz.de/10011263149
Motivated by weak convergence results in the paper of Takahashi & Yoshida (2005), we show strong convergence for an accelerated Euler–Maruyama scheme applied to perturbed stochastic differential equations. The Milstein scheme with the same acceleration is also discussed as an extended result....
Persistent link: https://www.econbiz.de/10010765572
This paper derives a new semi closed-form approximation formula for pricing an up-and-out barrier option under a certain type of stochastic volatility model including SABR model by applying a rigorous asymptotic expansion method developed by Kato, Takahashi and Yamada (2012). We also demonstrate...
Persistent link: https://www.econbiz.de/10010783589
This paper derives a new semi closed-form approximation formula for pricing an upand-out barrier option under a certain type of stochastic volatility model including SABR model by applying a rigorous asymptotic expansion method developed by Kato, Takahashi and Yamada [1]. We also demonstrate the...
Persistent link: https://www.econbiz.de/10010839696
This paper proposes a new closed-form approximation scheme for the representation of the forward-backward stochastic differential equations (FBSDEs) of Ma and Zhang (2002). In particular, we obtain an error estimate for the scheme applying Malliavin calculus method of Kunitomo and Takahashi...
Persistent link: https://www.econbiz.de/10010839702
This paper proposes a unified method for precise estimates of the error bounds in asymptotic expansions of an option price and its Greeks (sensitivities) under a stochastic volatility model. More generally, we also derive an error estimate for an asymptotic expansion around a general partially...
Persistent link: https://www.econbiz.de/10010839705
This paper presents a mathematical validity for an asymptotic expansion scheme of the solutions to the forward-backward stochastic differential equations (FBSDEs) in terms of a perturbed driver in the BSDE and a small diffusion in the FSDE. This computational scheme was proposed by...
Persistent link: https://www.econbiz.de/10010839706
This paper develops a new efficient scheme for approximations of expectations of the solutions to stochastic differential equations (SDEs). In particular, we present a method for connecting approximate operators based on an asymptotic expansion with multidimensional Malliavin weights to compute...
Persistent link: https://www.econbiz.de/10010839709
This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula and the duality formula in Malliavin calculus are effectively applied in pricing barrier options with...
Persistent link: https://www.econbiz.de/10010989079
This paper presents a new asymptotic expansion method for pricing continuously monitoring barrier options. In particular, we develops a semi-group expansion scheme for the Cauchy-Dirichlet problem in the second-order parabolic partial differential equations (PDEs) arising in barrier option...
Persistent link: https://www.econbiz.de/10010949184