Showing 1 - 10 of 116
We propose a dynamic factor model for the analysis of multivariate time series count data. Our model allows for idiosyncratic as well as common serially correlated latent factors in order to account for potentially complex dynamic interdependence between series of counts. The model is estimated...
Persistent link: https://www.econbiz.de/10010825879
Most of the empirical applications of the stochatic volatility (SV) model are based on the assumption that the conditional distribution of returns given the latent volatility process is normal. In this paper the SV model based on a conditional normal distribution is compa-red with SV...
Persistent link: https://www.econbiz.de/10011097552
According to the bivariate mixture hypothesis (BMH) as proposed by Tauchen and Pitts (1983) and Harris (1986,1987) the daily price changes and the correspond-ing trading volume on speculative markets follow a joint mixture of distributions with the unobservable number of daily information events...
Persistent link: https://www.econbiz.de/10011097605
Persistent link: https://www.econbiz.de/10005081930
According to the bivariate mixture hypothesis (BMH) as proposed by Tauchen and Pitts (1983) and Harris (1986, 1987) the daily price changes and the corresponding trading volume on speculative markets follow a joint mixture of distributions with the unobservable number of daily information events...
Persistent link: https://www.econbiz.de/10005309538
Most of the empirical applications of the stochastic volatility (SV) model are based on the assumption that the conditional distribution of returns, given the latent volatility process, is normal. In this paper, the SV model based on a conditional normal distribution is compared with SV...
Persistent link: https://www.econbiz.de/10005247821
In this paper we consider ML estimation for a broad class of parameter-driven models for discrete dependent variables with spatial correlation. Under this class of models, which includes spatial discrete choice models, spatial Tobit models and spatial count data models, the dependent variable is...
Persistent link: https://www.econbiz.de/10010954827
We develop a model of GDP growth under which regime changes are triggered stochastically by an observable tension index, constructed as the geometric sum of deviations of actual GDP growth from a corresponding sustainable rate. Within expansionary regimes, the tension index tends to increase,...
Persistent link: https://www.econbiz.de/10005075995
This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based upon Efficient Importance Sampling (EIS) which can be used for the analysis of a wide range of econometric models involving integrals without an analytical solution. EIS is a simple, generic and yet accurate...
Persistent link: https://www.econbiz.de/10005082827
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of...
Persistent link: https://www.econbiz.de/10005082841