Showing 1 - 10 of 936
The computing time for Markov Chain Monte Carlo (MCMC) algorithms can be prohibitively large for datasets with many observations, especially when the data density for each observation is costly to evaluate. We propose a framework where the likelihood function is estimated from a random subset of...
Persistent link: https://www.econbiz.de/10010500806
Many statistical and econometric learning methods rely on Bayesian ideas, often applied or reinterpreted in a frequentist setting. Two leading examples are shrinkage estimators and model averaging estimators, such as weighted-average least squares (WALS). In many instances, the accuracy of these...
Persistent link: https://www.econbiz.de/10012839923
Many statistical and econometric learning methods rely on Bayesian ideas, often applied or reinterpreted in a frequentist setting. Two leading examples are shrinkage estimators and model averaging estimators, such as weighted-average least squares (WALS). In many instances, the accuracy of these...
Persistent link: https://www.econbiz.de/10012176861
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly efficient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10011300365
This paper proposes a Differential-Independence Mixture Ensemble (DIME) sampler for the Bayesian estimation of macroeconomic models. It allows sampling from particularly challenging, high-dimensional black-box posterior distributions which may also be computationally expensive to evaluate. DIME...
Persistent link: https://www.econbiz.de/10013473686
This paper proposes a Differential-Independence Mixture Ensemble (DIME) sampler for the Bayesian estimation of macroeconomic models. It allows sampling from particularly challenging, high-dimensional black-box posterior distributions which may also be computationally expensive to evaluate. DIME...
Persistent link: https://www.econbiz.de/10014242595
We propose a nonparametric Bayesian approach for conducting inference on probabilistic surveys. We use this approach to study whether U.S. Survey of Professional Forecasters density projections for output growth and inflation are consistent with the noisy rational expectations hypothesis. We...
Persistent link: https://www.econbiz.de/10014080529
Duration dependent Markov-switching VAR (DDMS-VAR) models are time series models with data generating process consisting in a mixture of two VAR processes. The switching between the two VAR processes is governed by a two state Markov chain with transition probabilities that depend on how long...
Persistent link: https://www.econbiz.de/10014059391
We study job durations using a multivariate hazard model allowing for worker-specific and firm-specific unobserved determinants. The latter are captured by unobserved heterogeneity terms or random effects, one at the firm level and another at the worker level. This enables us to decompose the...
Persistent link: https://www.econbiz.de/10003808931