Showing 1 - 10 of 1,717
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10010399681
Persistent link: https://www.econbiz.de/10010191411
This paper explains how the Gibbs sampler can be used to perform Bayesian inference on GARCH models. Although the Gibbs sampler is usually based on the analyti-cal knowledge of the full conditional posterior densities, such knowledge is not available in regression models with GARCH errors. We...
Persistent link: https://www.econbiz.de/10014197191
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear, non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10013005987
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
Persistent link: https://www.econbiz.de/10010416851
In this paper, we review the most common specifications of discrete-time stochastic volatility (SV) models and illustrate the major principles of corresponding Markov Chain Monte Carlo (MCMC) based statistical inference. We provide a hands-on ap proach which is easily implemented in empirical...
Persistent link: https://www.econbiz.de/10003770817
Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering purposes. However, the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC) methods. Not only do SMC...
Persistent link: https://www.econbiz.de/10011504888
Several lessons learned from a Bayesian analysis of basic economic time series models by means of the Gibbs sampling algorithm are presented. Models include the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root model, the Instrumental Variables model...
Persistent link: https://www.econbiz.de/10011349180
Sequential Monte Carlo (SMC) methods are widely used for filtering purposes of non-linear economic or financial models. Nevertheless the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov- Chain...
Persistent link: https://www.econbiz.de/10011588382