Showing 1 - 10 of 719
We propose a new methodology for the Bayesian analysis of nonlinear non-Gaussian state space models with a Gaussian time-varying signal, where the signal is a function of a possibly high-dimensional state vector. The novelty of our approach is the development of proposal densities for the joint...
Persistent link: https://www.econbiz.de/10010326393
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10010491347
The paper considers a Bayesian approach to the cointegrated VAR model with a uniform prior on the cointegration space. Building on earlier work by Villani (2005b), where the posterior probability of the cointegration rank can be calculated conditional on the lag order, the current paper also...
Persistent link: https://www.econbiz.de/10011604738
This paper analyses features of 28 provincial growth-cycles in China’s economy from March 1989 to July 2009. We study the multivariate synchronization of provincial cycles and the selection of the number of cycles phases’ by means of panel Markov-switching models. We obtain evidence that...
Persistent link: https://www.econbiz.de/10011099465
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10011256750
We estimate by Bayesian inference the mixed conditional heteroskedasticity model of (Haas, Mittnik and Paolelella 2004a). We construct a Gibbs sampler algorithm to compute posterior and predictive densities. The number of mixture components is selected by the marginal likelihood criterion. We...
Persistent link: https://www.econbiz.de/10004984690
We estimate by Bayesian inference the mixed conditional heteroskedasticity model of (Haas, Mittnik, and Paolella 2004a). We construct a Gibbs sampler algorithm to compute posterior and predictive densities. The number of mixture components is selected by the marginal likelihood criterion. We...
Persistent link: https://www.econbiz.de/10005008373
Bayesian inference requires an analyst to set priors. Setting the right prior is crucial for precise forecasts. This paper analyzes how optimal prior changes when an economy is hit by a recession. For this task, an autoregressive distributed lag (ADL) model is chosen. The results show that a...
Persistent link: https://www.econbiz.de/10005103392
Persistent link: https://www.econbiz.de/10001705281
We consider forecast combination and, indirectly, model selection for VAR models when there is uncertainty about which variables to include in the model in addition to the forecast variables. The key difference from traditional Bayesian variable selection is that we also allow for uncertainty...
Persistent link: https://www.econbiz.de/10014221496