Showing 1 - 4 of 4
Many statistical applications require an estimate of a covariance matrix and/or its inverse.When the matrix dimension is large compared to the sample size, which happensfrequently, the sample covariance matrix is known to perform poorly and may suffer fromill-conditioning. There already exists...
Persistent link: https://www.econbiz.de/10009486994
The central message of this paper is that nobody should be using the sample covariance matrix for the purpose of portfolio optimization. It contains estimation error of the kind most likely to perturb a mean-variance optimizer. In its place, we suggest using the matrix obtained from the sample...
Persistent link: https://www.econbiz.de/10005772576
A well-known pitfall of Markowitz (1952) portfolio optimization is that the sample covariance matrix, which is a critical input, is very erroneous when there are many assets to choose from. If unchecked, this phenomenon skews the optimizer towards extreme weights that tend to perform poorly in...
Persistent link: https://www.econbiz.de/10005627983
The central message of this paper is that nobody should be using the sample covariance matrix for the purpose of portfolio optimization. It contains estimation error of the kind most likely to perturb a mean-variance optimizer. In its place, we suggest using the matrix obtained from the sample...
Persistent link: https://www.econbiz.de/10010547234