Showing 1 - 10 of 2,646
We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP). The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss...
Persistent link: https://www.econbiz.de/10012847269
We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP). The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss...
Persistent link: https://www.econbiz.de/10012243462
We explore the performance of mixed-frequency predictive regressions for stock returns from the perspective of a Bayesian investor. We develop a constrained parameter learning approach for sequential estimation allowing for belief revisions. Empirically, we find that mixed-frequency models...
Persistent link: https://www.econbiz.de/10014348997
At its core, portfolio and risk management is about gathering and processing market-related data in order to make effective investment decisions. To this end, risk and return statistics are estimated from relevant financial data and used as inputs within the investment process. It is this...
Persistent link: https://www.econbiz.de/10012893987
Multivariate GARCH models do not perform well in large dimensions due to the so-called curse of dimensionality. The recent DCC-NL model of Engle et al. (2019) is able to overcome this curse via nonlinear shrinkage estimation of the unconditional correlation matrix. In this paper, we show how...
Persistent link: https://www.econbiz.de/10013040932
This paper injects factor structure into the estimation of time-varying, large-dimensional covariance matrices of stock returns. Existing factor models struggle to model the covariance matrix of residuals in the presence of time-varying conditional heteroskedasticity in large universes....
Persistent link: https://www.econbiz.de/10011868115
Multivariate GARCH models do not perform well in large dimensions due to the so-called curse of dimensionality. The recent DCC-NL model of Engle et al. (2019) is able to overcome this curse via nonlinear shrinkage estimation of the unconditional correlation matrix. In this paper, we show how...
Persistent link: https://www.econbiz.de/10012584099
Modeling and forecasting dynamic (or time-varying) covariance matrices has many important applications in finance, such as Markowitz portfolio selection. A popular tool to this end are multivariate GARCH models. Historically, such models did not perform well in large dimensions due to the...
Persistent link: https://www.econbiz.de/10012253083
Markowitz portfolio selection is a cornerstone in finance, both in academia and in the industry. Most academic studies either ignore transaction costs or account for them in a way that is both unrealistic and suboptimal by (i) assuming transaction costs to be constant across stocks and (ii)...
Persistent link: https://www.econbiz.de/10013440073
Markowitz portfolio selection is a cornerstone in finance, in academia as well as in the industry. Most academic studies either ignore transaction costs or account for them in a way that is both unrealistic and suboptimal by (i) assuming transaction costs to be constant across stocks and (ii)...
Persistent link: https://www.econbiz.de/10015114775