Showing 1 - 10 of 2,213
Inference for estimates of treatment effects with clustered data requires great care when treatment is assigned at the group level. This is true for both pure treatment models and difference-in-differences regressions. Even when the number of clusters is quite large, cluster-robust standard...
Persistent link: https://www.econbiz.de/10011722291
Persistent link: https://www.econbiz.de/10010341228
Persistent link: https://www.econbiz.de/10011885487
Persistent link: https://www.econbiz.de/10013554721
Persistent link: https://www.econbiz.de/10014338128
Persistent link: https://www.econbiz.de/10014339912
Clustered covariances or clustered standard errors are very widely used to account for correlated or clustered data, especially in economics, political sciences, or other social sciences. They are employed to adjust the inference following estimation of a standard least-squares regression or...
Persistent link: https://www.econbiz.de/10011697332
We study a cluster-robust variance estimator (CRVE) for regression models with clustering in two dimensions that was proposed in Cameron, Gelback, and Miller (2011). We prove that this CRVE is consistent and yields valid inferences under precisely stated assumptions about moments and cluster...
Persistent link: https://www.econbiz.de/10011722260
Persistent link: https://www.econbiz.de/10011778838
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011657377