Showing 1 - 10 of 1,251
In this paper we present, propose and examine additional membership functions as also we propose least squares with genetic algorithms optimization in order to find the optimum fuzzy membership functions parameters. More specifically, we present the tangent hyperbolic, Gaussian and Generalized...
Persistent link: https://www.econbiz.de/10013138752
In this paper we present a very brief description of least mean square algorithm with applications in time-series analysis of economic and financial time series. We present some numerical applications; forecasts for the Gross Domestic Product growth rate of UK and Italy, forecasts for S&P 500...
Persistent link: https://www.econbiz.de/10013138755
In this paper we examine feed-forward neural networks using genetic algorithms in the training process instead of error backpropagation algorithm. Additionally real encoding is preferred to binary encoding as it is more appropriate to find the optimum weights. We use learning and momentum rates...
Persistent link: https://www.econbiz.de/10013138757
The fuzzy transform (F-transform), introduced by I. Perfilieva, is a powerful tool for the construction of fuzzy approximation models; it is based on generalized fuzzy partitions and it is obtained by minimizing a quadratic (L₂-norm) functional. In this paper we describe an analogous...
Persistent link: https://www.econbiz.de/10012906853
In general, the properties of the conditional distribution of multiple period returns do not follow easily from the one-period data generating process. This renders computation of Value-at-Risk and Expected Shortfall for multiple period returns a non-trivial task. In this paper we consider some...
Persistent link: https://www.econbiz.de/10013155481
This article demonstrates the use of two approaches to parallelizing a Garch(1,1) calibration algorithm. The base serial implementation is a genetic algorithm that uses maximum likelihood in the fitness function. This is written in generic C. The first type of parallelization involves...
Persistent link: https://www.econbiz.de/10014178906
We propose a flexible GARCH-type model for the prediction of volatility in financial time series. The approach relies on the idea of using multivariate B-splines of lagged observations and volatilities. Estimation of such a B-spline basis expansion is constructed within the likelihood framework...
Persistent link: https://www.econbiz.de/10014051065
The procedure for estimating probabilities of future investment returns using time-shifted indexes is based on the simple principle that a multi-dimensional conditional probability distribution can be envisioned involving investment total returns (for a single investment or a fixed portfolio of...
Persistent link: https://www.econbiz.de/10014198891
This paper proposes full-Bayes priors for time-varying parameter vector autoregressions (TVP-VARs) which are more robust and objective than existing choices proposed in the literature. We formulate the priors in a way that they allow for straightforward posterior computation, they require...
Persistent link: https://www.econbiz.de/10013059299
In this paper we present, propose and examine additional membership functions as also we propose least squares with genetic algorithms optimization in order to find the optimum fuzzy membership functions parameters. More specifically, we present the tangent hyperbolic, Gaussian and Generalized...
Persistent link: https://www.econbiz.de/10013126949