Showing 1 - 9 of 9
In this article we consider the efficient estimation of the tail distribution of the maximum of correlated normal random variables. We show that the currently recommended Monte Carlo estimator has difficulties in quantifying its precision, because its sample variance estimator is an inefficient...
Persistent link: https://www.econbiz.de/10011431354
In this article we consider the efficient estimation of the tail distribution of the maximum of correlated normal random variables. We show that the currently recommended Monte Carlo estimator has difficulties in quantifying its precision, because its sample variance estimator is an inefficient...
Persistent link: https://www.econbiz.de/10013010233
Persistent link: https://www.econbiz.de/10001100441
Persistent link: https://www.econbiz.de/10009305691
Persistent link: https://www.econbiz.de/10013279838
Persistent link: https://www.econbiz.de/10013279840
Persistent link: https://www.econbiz.de/10014483197
Persistent link: https://www.econbiz.de/10015408418
In this paper we describe a Sequential Importance Sampling (SIS) procedure for counting the number of vertex covers in general graphs. The performance of SIS depends heavily on how close the SIS proposal distribution is to a uniform one over a suitably restricted set. The proposed algorithm...
Persistent link: https://www.econbiz.de/10013077159