Showing 1 - 10 of 40,038
This paper introduces a new class of robust regression estimators. The proposed twostep least weighted squares (2S-LWS) estimator employs data-adaptive weights determined from the empirical distribution, quantile, or density functions of regression residuals obtained from an initial robust fit....
Persistent link: https://www.econbiz.de/10012731904
Assessing the robustness of the results of econometric analysis is a long standing subject of lively research. The majority of the literature focuses on sensitivity to model specification, while the quantification of sensitivity to sets of influential observations has received relatively...
Persistent link: https://www.econbiz.de/10012494906
Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semiparametric general trimmed estimator (GTE) of truncated...
Persistent link: https://www.econbiz.de/10014047660
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. This sensitivity is addressed by the theory of robust statistics which builds upon parametric specification, but provides...
Persistent link: https://www.econbiz.de/10014113950
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. This sensitivity addressed by the theory of robust statistics which builds upon parametric specification, but provides methodology...
Persistent link: https://www.econbiz.de/10013154935
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. On the other hand, semiparametric and nonparametric methods, which are not restricted by parametric assumptions, require more data...
Persistent link: https://www.econbiz.de/10009618360
At the present time there is no well accepted test for determining whether or not robust regression parameter estimates are significantly different than least squares estimates. Thus. we propose and demonstrate the efficacy of two Wald-like statistical tests for the above purposes using...
Persistent link: https://www.econbiz.de/10013215762
Abstract This paper is focused on detailed aspects of the loss function rho and its derivative psi for an optimal bias robust regression method that minimizes the maximum asymptotic bias subject to a constraint on normal distribution efficiency. The analytic form of the psi function was...
Persistent link: https://www.econbiz.de/10013216274
A measurement error model is a regression model with (substantial) measurement errors in the variables. Disregarding these measurement errors in estimating the regression parameters results in asymptotically biased estimators. Several methods have been proposed to eliminate, or at least to...
Persistent link: https://www.econbiz.de/10003135841
This paper constructs estimators for panel data regression models with individual specific heterogeneity and two-sided censoring and truncation. Following Powell (1986) the estimation strategy is based on moment conditions constructed from re-censored or re-truncated residuals. While these...
Persistent link: https://www.econbiz.de/10013118306