Showing 1 - 5 of 5
We consider a first-order autoregressive model with conditionally heteroskedastic innovations. The asymptotic distributions of least squares (LS), infeasible generalized least squares (GLS), and feasible GLS estimators and t statistics are determined. The GLS procedures allow for...
Persistent link: https://www.econbiz.de/10011052323
We first show that the Generalized Least Squares estimator is the best median unbiased estimator of the regression parameters for quite general loss functions, when the parameter space is unrestricted. Of note is the fact that this result holds without moment restrictions. Thus, the errors may...
Persistent link: https://www.econbiz.de/10004990719
This paper considers a first-order autoregressive model with conditionally heteroskedastic innovations. The asymptotic distributions of least squares (LS), infeasible generalized least squares (GLS), and feasible GLS estimators and t statistics are determined. The GLS procedures allow for...
Persistent link: https://www.econbiz.de/10005093921
This paper considers a first-order autoregressive model with conditionally heteroskedastic innovations. The asymptotic distributions of least squares (LS), infeasible generalized least squares (GLS), and feasible GLS estimators and t statistics are determined. The GLS procedures allow for...
Persistent link: https://www.econbiz.de/10008528944
This paper considers a first-order autoregressive model with conditionally heteroskedastic innovations. The asymptotic distributions of least squares (LS), infeasible generalized least squares (GLS), and feasible GLS estimators and t statistics are determined. The GLS procedures allow for...
Persistent link: https://www.econbiz.de/10009645614