Showing 1 - 4 of 4
In this paper we provide a unified methodology for conducting likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility (SV) models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space...
Persistent link: https://www.econbiz.de/10014185810
Persistent link: https://www.econbiz.de/10009382185
In this paper we provide a unifed methodology in order to conduct likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space...
Persistent link: https://www.econbiz.de/10003866080
We provide a new approach to the sampling of the well known mixture of Dirichlet process model. Recent attention has focused on retention of the random distribution function in the model, but sampling algorithms have then suffered from the countably infinite representation these distributions...
Persistent link: https://www.econbiz.de/10012732584