Showing 1 - 10 of 42
We show that the implied volatility has a uniform (in log moneyness x) limit as the maturity tends to infinity, given by an explicit closed-form formula, for x in some compact neighborhood of zero in the class of affine stochastic volatility models. This expression is function of the convex dual...
Persistent link: https://www.econbiz.de/10013120967
We rigorize the work of Lewis (2007) and Durrleman (2005) on the small-time asymptotic behavior of the implied volatility under the Heston stochastic volatility model (Theorem 2.1). We apply the Gärtner-Ellis theorem from large deviations theory to the exponential affine closed-form expression...
Persistent link: https://www.econbiz.de/10013116579
We build on of the work of Henry-Labordµere and Lewis on the small-time behaviour of the return distribution under a general local-stochastic volatility model with zero correlation. We do this using the Freidlin-Wentzell theory of large deviations for stochastic differential equations, and then...
Persistent link: https://www.econbiz.de/10013116586
Using the Gartner-Ellis theorem from large deviation theory, we characterize the leading-order behaviour of call option prices under the Heston model, in a new regime where the maturity is large and the log-moneyness is also proportional to the maturity. Using this result, we then derive the...
Persistent link: https://www.econbiz.de/10013116587
We show that if the discounted Stock price process is a continuous martingale, then there is a simple relationship linking the variance of the terminal Stock price and the variance of its arithmetic average. We use this to establish a model-independent upper bound for the price of a continuously...
Persistent link: https://www.econbiz.de/10013116588
This note identifies a gap in the proof of Corollary 2.4 in [2], which arises because the essential smoothness of the family (Xt/t) can fail for the log-spot process X in the Heston model, and describes how to circumvent the issue by applying a standard argument from large deviation theory
Persistent link: https://www.econbiz.de/10013092673
Persistent link: https://www.econbiz.de/10009269355
In equity and foreign exchange markets the risk-neutral dynamics of the underlying asset are commonly represented by stochastic volatility models with jumps. In this paper we consider a dense subclass of such models and develop analytically tractable formulae for the prices of a range of...
Persistent link: https://www.econbiz.de/10013149810
This paper gives an arbitrage-free prediction for future prices of an arbitrary co-terminal set of options with a given maturity, based on the observed time series of these option prices. The statistical analysis of such a multi-dimensional time series of option prices corresponding to n strikes...
Persistent link: https://www.econbiz.de/10013050463
Modeling stock prices via jump processes is common in financial markets. In practice, to hedge a contingent claim one typically uses the so-called delta-hedging strategy. This strategy stems from the Black-Merton-Scholes model where it perfectly replicates contingent claims. From the theoretical...
Persistent link: https://www.econbiz.de/10013128008