Showing 1 - 10 of 163
In this paper we provide a unified methodology for conducting likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility (SV) models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space...
Persistent link: https://www.econbiz.de/10014185810
We provide a formulation of stochastic volatility (SV) based on Gaussian process regression (GPR). Forecasting volatility out-of-sample, both simulation and empirical analyses show that our GPR-based stochastic volatility (GPSV) model clearly outperforms SV and GARCH benchmarks, especially at...
Persistent link: https://www.econbiz.de/10014186681
We document five novel empirical findings on the well-known potential ordering drawback associated with the time-varying parameter vector autoregression with stochastic volatility developed by Cogley and Sargent (2005) and Primiceri (2005), CSP-SV. First, the ordering does not affect point...
Persistent link: https://www.econbiz.de/10014048674
We present a self-consistent model for explosive financial bubbles, which combines a mean-reverting volatility process and a stochastic conditional return which reflects nonlinear positive feedbacks and continuous updates of the investors' beliefs and sentiments. The conditional expected returns...
Persistent link: https://www.econbiz.de/10014195793
This paper develops and illustrates a simple method to generate a DSGE model-based forecast for variables that do not explicitly appear in the model (non-core variables). We use auxiliary regressions that resemble measurement equations in a dynamic factor model to link the non-core variables to...
Persistent link: https://www.econbiz.de/10014214672
Empirical findings related to the time series properties of stock returns volatility indicate autocorrelations that decay slowly at long lags. In light of this, several long-memory models have been proposed. However, the possibility of level shifts has been advanced as a possible explanation for...
Persistent link: https://www.econbiz.de/10014217128
Most DSGE models and methods make inappropriate asymmetric information assumptions. They assume that all economic agents have full access to measurement of all variables and past shocks, whereas the econometricians have no access to this. An alternative assumption is that there is symmetry, in...
Persistent link: https://www.econbiz.de/10014219401
This work deals with multivariate stochastic volatility models, which account for a time-varying variance-covariance structure of the observable variables. We focus on a special class of models recently proposed in the literature and assume that the covariance matrix is a latent variable which...
Persistent link: https://www.econbiz.de/10014220749
The goal of this article is an exact Bayesian analysis of the Heston (1993) stochastic volatility model. We carefully study the effect different parameterizations of the latent volatility process and the parameters of the volatility process have on the convergence and the mixing behavior of the...
Persistent link: https://www.econbiz.de/10014221761
Multiple time series data may exhibit clustering over time and the clustering effect may change across different series. This paper is motivated by the Bayesian non–parametric modelling of the dependence between clustering effects in multiple time series analysis. We follow a Dirichlet process...
Persistent link: https://www.econbiz.de/10014155880