Showing 1 - 10 of 187
This paper presents the R package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel - typically a posterior density kernel - using an adaptive mixture of...
Persistent link: https://www.econbiz.de/10012971949
This paper presents the R package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel – typically a posterior density kernel – using an adaptive mixture...
Persistent link: https://www.econbiz.de/10012951941
We suggest to extend the stacking procedure for a combination of predictive densities, proposed by Yao et al in the journal Bayesian Analysis to a setting where dynamic learning occurs about features of predictive densities of possibly misspecified models. This improves the averaging process of...
Persistent link: https://www.econbiz.de/10012913233
Persistent link: https://www.econbiz.de/10014431644
This paper presents the R-package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel -- typically a posterior density kernel -- using an adaptive mixture...
Persistent link: https://www.econbiz.de/10010504035
This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel...
Persistent link: https://www.econbiz.de/10011504818
Persistent link: https://www.econbiz.de/10011485373
This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm, introduced by Hoogerheide, Opschoor and Van Dijk (2012), provides an automatic and flexible method to approximate a non-elliptical target density using...
Persistent link: https://www.econbiz.de/10011441581
Persistent link: https://www.econbiz.de/10011326076
We suggest to extend the stacking procedure for a combination of predictive densities, proposed by Yao, Vehtari, Simpson, and Gelman(2018), to a setting where dynamic learning occurs about features of predictive densities of possibly misspecified models. This improves the averaging process of...
Persistent link: https://www.econbiz.de/10011895574