Showing 1 - 10 of 621
High-dimensional regression problems which reveal dynamic behavior are typically analyzed by time propagation of a few number of factors. The inference on the whole system is then based on the low-dimensional time series analysis. Such highdimensional problems occur frequently in many different...
Persistent link: https://www.econbiz.de/10010274126
This paper proposes a new combined semiparametric estimator of the conditional variance that takes the product of a parametric estimator and a nonparametric estimator based on machine learning. A popular kernel-based machine learning algorithm, known as the kernel-regularized least squares...
Persistent link: https://www.econbiz.de/10012814196
I discuss nonlinear difference-in-differences models, arguing their interpretation depends on the context of their application. When parallel trends are assumed in the natural scale of the dependent variable, I contend the treatment effect is the interaction effect (a cross-difference), while if...
Persistent link: https://www.econbiz.de/10013241778
Composite Marginal Likelihood (CML) has become a popular approach for estimating spatial probit models. However, for spatial autoregressive specifications the existing brute-force implementations are infeasible in large samples as they rely on inverting the high-dimensional precision matrix of...
Persistent link: https://www.econbiz.de/10012987287
The focus of this paper is an information theoretic-symbolic logic approach to extract information from complex economic systems and unlock its dynamic content. Permutation Entropy (PE) is used to capture the permutation patterns-ordinal relations among the individual values of a given time...
Persistent link: https://www.econbiz.de/10012866116
The focus of this paper is an information theoretic-symbolic logic approach to extract information from complex economic systems and unlock its dynamic content. Permutation Entropy (PE) is used to capture the permutation patterns-ordinal relations among the individual values of a given time...
Persistent link: https://www.econbiz.de/10012025643
I expose the risk of false discoveries in the context of multiple treatment effects. A false discovery is a nonexistent effect that is falsely labeled as statistically significant by its individual t-value. Labeling nonexistent effects as statistically significant has wide-ranging academic and...
Persistent link: https://www.econbiz.de/10010316851
The sample covariance matrix is known to contain substantial statistical noise, making it inappropriate for use in financial decision making. Leading researchers have proposed various filtering methods that attempt to reduce the level of noise in the covariance matrix estimator. In most cases,...
Persistent link: https://www.econbiz.de/10012965654
Conditional distributions for the analysis of convergence are usually estimated using a standard kernel smoother but this is known to be biased. Hyndman et al. (1996) thus suggest a conditional density estimator with a mean function specified by a local polynomial smoother, i.e. one with better...
Persistent link: https://www.econbiz.de/10013115940
I expose the risk of false discoveries in the context of multiple treatment effects. A false discovery is a nonexistent effect that is falsely labeled as statistically significant by its individual t-value. Labeling nonexistent effects as statistically significant has wide-ranging academic and...
Persistent link: https://www.econbiz.de/10009740949