Showing 1 - 10 of 19
We develop a numerical filtering procedure that facilitates efficient likelihood evaluation in applications involving non-linear and non-gaussian state-space models. The procedure approximates necessary integrals using continuous or piecewise-continuous approximations of target densities....
Persistent link: https://www.econbiz.de/10010296289
We introduce a multivariate multiplicative error model which is driven by componentspecific observation driven dynamics as well as a common latent autoregressive factor. The model is designed to explicitly account for (information driven) common factor dynamics as well as idiosyncratic effects...
Persistent link: https://www.econbiz.de/10010263700
We develop a numerical procedure that facilitates efficient likelihood evaluation in applications involving non-linear and non-Gaussian state-space models. The procedure approximates necessary integrals using continuous approximations of target densities. Construction is achieved via efficient...
Persistent link: https://www.econbiz.de/10010298827
A wide variety of conditional and stochastic variance models has been used to estimate latent volatility (or risk). In this paper, we propose a new long memory asymmetric volatility model which captures more flexible asymmetric patterns as compared with existing models. We extend the new...
Persistent link: https://www.econbiz.de/10010732617
Dynamic interactions among stock return, Research and Development (R&D) expenses, patent applications based on R&D investment, and the propensity to patent are studied in this work for a panel of firms from the United States. The panel includes technologically similar firms, neck-to-neck, mostly...
Persistent link: https://www.econbiz.de/10010861822
This paper introduces a new framework for the dynamic modelling of univariate and multivariate point processes. The so-called latent factor intensity (LFI) model is based on the assumption that the intensity function consists of univariate or multivariate observation driven dynamic components...
Persistent link: https://www.econbiz.de/10005008331
We develop a numerical filtering procedure that facilitates efficient likelihood evaluation in applications involving non-linear and non-gaussian state-space models. The procedure approximates necessary integrals using continuous or piecewise-continuous approximations of target densities....
Persistent link: https://www.econbiz.de/10005082902
We develop a numerical procedure that facilitates efficient likelihood evaluation in applications involving non-linear and non-Gaussian state-space models. The procedure approximates necessary integrals using continuous approximations of target densities. Construction is achieved via efficient...
Persistent link: https://www.econbiz.de/10005059009
We introduce a multivariate multiplicative error model which is driven by component- specific observation driven dynamics as well as a common latent autoregressive factor. The model is designed to explicitly account for (information driven) common factor dynamics as well as idiosyncratic effects...
Persistent link: https://www.econbiz.de/10005677990
In this paper, we propose a framework for the modelling of multivariate dynamic processes which are driven by an unobservable common autoregressive component. Economically motivated by the mixture-of-distribution hypothesis, we model the multivariate intraday trading process of return...
Persistent link: https://www.econbiz.de/10005750002