Showing 1 - 5 of 5
A mean of a sequence π = (x1, x2, . . . , xk) of elements of a finite metric space (X, d) is an element x for which is minimum. The function Mean whose domain is the set of all finite sequences on X and is defined by Mean(π) = { x | x is a mean of π } is called the mean function on...
Persistent link: https://www.econbiz.de/10008584836
Persistent link: https://www.econbiz.de/10008672304
Persistent link: https://www.econbiz.de/10010731730
A mean of a sequence π = (x1, x2, . . . , xk) of elements of a finite metric space (X, d) is an element x for which is minimum. The function Mean whose domain is the set of all finite sequences on X and is defined by Mean(π) = { x | x is a mean of π } is called the mean function on X. In this...
Persistent link: https://www.econbiz.de/10010837892
The general problem in location theory deals with functions that find sites on a graph (discrete case) or network (continuous case) in such a way as to minimize some cost (or maximize some benefit) to a given set of clients represented by vertices on the graph or points on the network. The...
Persistent link: https://www.econbiz.de/10008484078