Showing 1 - 10 of 43
Standard statistical analyses of observational data often exclude valuable information from individuals with incomplete measurements. This may lead to biased estimates of the treatment effect and loss of precision. The issue of missing data for inverse probability of treatment weighted...
Persistent link: https://www.econbiz.de/10005246592
Clustered data arise in many settings, particularly within the social and biomedical sciences. For example, multiple-source reports are commonly collected in child and adolescent psychiatric epidemiologic studies where researchers use various informants (for instance, parents and adolescents) to...
Persistent link: https://www.econbiz.de/10011105649
We present an update of mim, a program for managing multiply im- puted datasets and performing inference (estimating parameters) using Rubin’s rules for combining estimates from imputed datasets. The new features of particular importance are an option for estimating the Monte Carlo error (due...
Persistent link: https://www.econbiz.de/10004964302
Following the seminal publications of Rubin about thirty years ago, statisticians have become increasingly aware of the inadequacy of "complete-case" analysis of datasets with missing observations. In medicine, for example, observations may be missing in a sporadic way for different covariates,...
Persistent link: https://www.econbiz.de/10005748363
Our new command midiagplots makes diagnostic plots for multiple imputations created by mi impute. The plots compare the distribution of the imputed values with that of the observed values so that problems with the imputation model can be corrected before the imputed data are analyzed. We include...
Persistent link: https://www.econbiz.de/10010631452
This article describes a substantial update to mvis, which brings it more closely in line with the feature set of S. van Buuren and C. G. M. Oudshoorn’s implementation of the MICE system in R and S-PLUS (for details, see http://www.multiple-imputation.com). To make a clear distinction from...
Persistent link: https://www.econbiz.de/10005568782
The authors analyze data on marital satisfaction, obtained from couples at two distinct moments in time (1990, 1995). The data are of a bivariate longitudinal type. Moreover, some couples provide incomplete records only, usually because the 1995 follow-up interview has not taken place. The...
Persistent link: https://www.econbiz.de/10010789689
A new set of tools is described for performing analyses of an ensemble of datasets that includes multiple copies of the original data with imputations of missing values, as required for the method of multiple imputation. The tools replace those originally developed by the authors. They are based...
Persistent link: https://www.econbiz.de/10005583254
Patient dropout is a common problem in studies that collect repeated binary measurements. Generalized estimating equations (GEE) are often used to analyze such data. The dropout mechanism may be plausibly missing at random (MAR), i.e. unrelated to future measurements given covariates and past...
Persistent link: https://www.econbiz.de/10008674989
In the first part of the dissertation, we derive two methods for responders analysis in longitudinal data with random missing data. Often a binary variable is generated by dichotomizing an underlying continuous variable measured at a specific point in time according to a prespecified threshold...
Persistent link: https://www.econbiz.de/10009431182