Showing 1 - 10 of 37
Persistent link: https://www.econbiz.de/10013349144
Persistent link: https://www.econbiz.de/10013465694
Multivariate GARCH models do not perform well in large dimensions due to the so-called curse of dimensionality. The recent DCC-NL model of Engle et al. (2019) is able to overcome this curse via nonlinear shrinkage estimation of the unconditional correlation matrix. In this paper, we show how...
Persistent link: https://www.econbiz.de/10013040932
Persistent link: https://www.econbiz.de/10014431556
This paper injects factor structure into the estimation of time-varying, large-dimensional covariance matrices of stock returns. Existing factor models struggle to model the covariance matrix of residuals in the presence of time-varying conditional heteroskedasticity in large universes....
Persistent link: https://www.econbiz.de/10011868115
We propose and implement a procedure to optimally hedge climate change risk. First, we construct climate risk indices through textual analysis of newspapers. Second, we present a new approach to compute factor mimicking portfolios to build climate risk hedge portfolios. The new mimicking...
Persistent link: https://www.econbiz.de/10014232089
Conditional heteroskedasticity of the error terms is a common occurrence in financial factor models, such as the CAPM and Fama-French factor models. This feature necessitates the use of heteroskedasticity consistent (HC) standard errors to make valid inference for regression coefficients. In...
Persistent link: https://www.econbiz.de/10014232090
Existing factor models struggle to model the covariance matrix for a large number of stocks and factors. Therefore, we introduce a new covariance matrix estimator that first shrinks the factor model coefficients and then applies nonlinear shrinkage to the residuals and factors. The estimator...
Persistent link: https://www.econbiz.de/10013213965
Existing factor models struggle to model the covariance matrix for a large number of stocks and factors. Therefore, we introduce a new covariance matrix estimator that first shrinks the factor model coefficients and then applies nonlinear shrinkage to the residuals and factors. The estimator...
Persistent link: https://www.econbiz.de/10013217696
Existing shrinkage techniques struggle to model the covariance matrix of asset returns in the presence of multiple-asset classes. Therefore, we introduce a Blockbuster shrinkage estimator that clusters the covariance matrix accordingly. Besides the definition and derivation of a new...
Persistent link: https://www.econbiz.de/10012849001