Showing 1 - 6 of 6
In this article, we present new ideas concerning Non-Gaussian Component Analysis (NGCA). We use the structural assumption that a high-dimensional random vector X can be represented as a sum of two components - a lowdimensional signal S and a noise component N. We show that this assumption...
Let a high-dimensional random vector ⃗X can be represented as a sum of two components - a signal ⃗S , which belongs to some low-dimensional subspace S, and a noise component ⃗N . This paper presents a new approach for estimating the subspace S based on the ideas of the Non-Gaussian...
Let a high-dimensional random vector X can be represented as a sum of two components - a signal S , which belongs to some low-dimensional subspace S, and a noise component N . This paper presents a new approach for estimating the subspace S based on the ideas of the Non-Gaussian Component...
In this paper, we prove a kind of Abelian theorem for a class of stochastic volatility models (X,V) where both the state process X and the volatility process V may have jumps. Our results relate the asymptotic behavior of the characteristic function of XΔ for some Δ0 in a stationary regime to...
In this article, we present new ideas concerning Non-Gaussian Component Analysis (NGCA). We use the structural assumption that a high-dimensional random vector X can be represented as a sum of two components - a lowdimensional signal S and a noise component N. We show that this assumption...
Let a high-dimensional random vector X can be represented as a sum of two components - a signal S, which belongs to some low-dimensional subspace S, and a noise component N. This paper presents a new approach for estimating the subspace S based on the ideas of the Non-Gaussian Component...