Showing 1 - 10 of 425
The instability in the selection of models is a major concern with data sets containing a large number of covariates. This paper deals with variable selection methodology in the case of high-dimensional problems where the response variable can be right censored. We focuse on new stable variable...
In this paper, we study the estimation and variable selection of the sufficient dimension reduction space for survival data via a new combination of <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$L_1$$</EquationSource> </InlineEquation> penalty and the refined outer product of gradient method (rOPG; Xia et al. in J R Stat Soc Ser B 64:363–410, <CitationRef CitationID="CR28">2002</CitationRef>), called SH-OPG...</citationref></equationsource></inlineequation>
Current statistical inference problems in genomic data analysis involve parameter estimation for high-dimensional multivariate distributions, with typically unknown and intricate correlation patterns among variables. Addressing these inference questions satisfactorily requires: (i) an intensive...
In van der Laan and Dudoit (2003) we propose and theoretically study a unified loss function based statistical methodology, which provides a road map for estimation and performance assessment. Given a parameter of interest which can be described as the minimizer of the population mean of a loss...
A nonparametric procedure for quantile regression, or more generally nonparametric M-estimation, is proposed which is completely data-driven and adapts locally to the regularity of the regression function. This is achieved by considering in each point M-estimators over different local...
Cultural factors and especially common languages are well-known determinants of trade. By contrast, the knowledge of foreign languages was not explored in the literature so far. We combine traditional gravity models with data on fluency in the main languages used in EU and candidate countries....
We develop uniformly valid confidence regions for a regression coefficient in a high-dimensional sparse LAD (least absolute deviation or median) regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s n of them are...
Cultural factors and especially common languages are well-known determinants of trade. By contrast, the knowledge of foreign languages was not explored in the literature so far. We combine traditional gravity models with data on fluency in the main languages used in EU and candidate countries....