The continuous stochastic gradient method: part I–convergence theory
Year of publication: |
2023
|
---|---|
Authors: | Grieshammer, Max ; Pflug, Lukas ; Stingl, Michael ; Uihlein, Andrian |
Published in: |
Computational Optimization and Applications. - New York, NY : Springer US, ISSN 1573-2894. - Vol. 87.2023, 3, p. 935-976
|
Publisher: |
New York, NY : Springer US |
Subject: | Stochastic gradient scheme | Convergence analysis | Step size rule | Backtracking line search | Constant step size |
-
The continuous stochastic gradient method: part II–application and numerics
Grieshammer, Max, (2023)
-
The continuous stochastic gradient method: part I–convergence theory
Grieshammer, Max, (2023)
-
The continuous stochastic gradient method: part II–application and numerics
Grieshammer, Max, (2023)
- More ...
-
The continuous stochastic gradient method: part II–application and numerics
Grieshammer, Max, (2023)
-
The continuous stochastic gradient method: part I–convergence theory
Grieshammer, Max, (2023)
-
The continuous stochastic gradient method: part II–application and numerics
Grieshammer, Max, (2023)
- More ...