A Bayesian sampling approach to measuring the price responsiveness of gasoline demand using a constrained partially linear model
| Year of publication: |
September 2017
|
|---|---|
| Authors: | Chen, Haotian ; Smyth, Russell ; Zhang, Xibin |
| Published in: |
Energy economics. - Amsterdam : Elsevier, ISSN 0140-9883, ZDB-ID 795279-X. - Vol. 67.2017, p. 346-354
|
| Subject: | Kernel estimator | Markov chain Monte Carlo | Price elasticity | Slutsky condition | Smoothness | Preiselastizität | Schätztheorie | Estimation theory | Benzin | Gasoline | Schätzung | Estimation | Nichtparametrisches Verfahren | Nonparametric statistics | Monte-Carlo-Simulation | Monte Carlo simulation | Markov-Kette | Markov chain | Nachfrage | Demand | Bayes-Statistik | Bayesian inference | Stichprobenerhebung | Sampling |
-
Scalable MCMC for large data problems using data subsampling and the difference estimator
Quiroz, Matias, (2015)
-
Semiparametric GARCH via Bayesian model averaging
Chen, Wilson Ye, (2021)
-
Bayesian bandwidth estimation for local linear fitting in nonparametric regression models
Shang, Han Lin, (2022)
- More ...
-
Liddle, Brantley, (2020)
-
Time-varying income and price elasticities for energy demand : Evidence from a middle-income panel
Liddle, Brantley, (2020)
-
R&D intensity and carbon emissions in the G7 : 1870-2014
Awaworyi Churchill, Sefa, (2019)
- More ...