A Bayesian time-varying autoregressive model for improved short-term and long-term prediction
Year of publication: |
2022
|
---|---|
Authors: | Berninger, Christoph ; Stöcker, Almond ; Rügamer, David |
Published in: |
Journal of forecasting. - New York, NY : Wiley Interscience, ISSN 1099-131X, ZDB-ID 2001645-1. - Vol. 41.2022, 1, p. 181-200
|
Subject: | Bayesian time-varying autoregressive models | Gibbs sampler | interest rate models | long run regularization | MCMC metropolis-Hastings | Bayes-Statistik | Bayesian inference | Theorie | Theory | Prognoseverfahren | Forecasting model | Autokorrelation | Autocorrelation | Markov-Kette | Markov chain | Zinsstruktur | Yield curve | Monte-Carlo-Simulation | Monte Carlo simulation | ARCH-Modell | ARCH model | Volatilität | Volatility | Zeitreihenanalyse | Time series analysis |
-
Hachicha, Fatma, (2022)
-
Flexible modeling of dependence in volatility processes
Kalli, Maria, (2015)
-
Bayesian nonparametrics for financial volatility modeling
Zaharieva, Martina Danielova, (2017)
- More ...
-
A Bayesian time‐varying autoregressive model for improved short‐term and long‐term prediction
Berninger, Christoph, (2021)
-
A Bayesian time‐varying autoregressive model for improved short‐term and long‐term prediction
Berninger, Christoph, (2021)
-
Berninger, Christoph, (2021)
- More ...