A biased random-key genetic algorithm for the maximum quasi-clique problem
| Year of publication: |
16 December 2018
|
|---|---|
| Authors: | Pinto, Bruno Q. ; Ribeiro, Celso C. ; Rosseti, Isabel ; Plastino, Alexandre |
| Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 271.2018, 3 (16.12.), p. 849-865
|
| Subject: | Metaheuristics | Biased random-key genetic algorithm | Maximum quasi-clique problem | Maximum clique problem | Graph density | Evolutionärer Algorithmus | Evolutionary algorithm | Heuristik | Heuristics | Graphentheorie | Graph theory | Systematischer Fehler | Bias | Mathematische Optimierung | Mathematical programming | Scheduling-Verfahren | Scheduling problem |
-
A biased random-key genetic algorithm for the capacitated minimum spanning tree problem
Ruiz, Efrain, (2015)
-
A biased random-key genetic algorithm for the container pre-marshalling problem
Hottung, André, (2016)
-
A biased random-key genetic algorithm for the set orienteering problem
Carrabs, Francesco, (2021)
- More ...
-
Improving a state‐of‐the‐art heuristic for the minimum latency problem with data mining
Santana, Ítalo, (2020)
-
A hybrid data mining heuristic to solve the point‐feature cartographic label placement problem
Guerine, Marcos, (2019)
-
Improving a state-of-the-art heuristic for the minimum latency problem with data mining
Santana, Ítalo, (2022)
- More ...