A big data analytics approach for construction firms failure prediction models
Year of publication: |
2019
|
---|---|
Authors: | Alaka, Hafiz ; Oyedele, Lukumon ; Owolabi, Hakeem ; Akinade, Olugbenga ; Bilal, Muhammad ; Ajayi, Saheed |
Published in: |
IEEE transactions on engineering management : EM. - New York, NY : IEEE, ISSN 0018-9391, ZDB-ID 160438-7. - Vol. 66.2019, 4, p. 689-698
|
Subject: | Artificial neural networks | big data applications | construction industry | machine learning | predictive models | support vector machines | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Big Data | Big data | Bauwirtschaft | Construction industry | Data Mining | Data mining | Mustererkennung | Pattern recognition | Insolvenz | Insolvency |
-
Kosala, Raymond, (2017)
-
Adapting support vector optimisation algorithms to textual gender classification
Gomez, Javier, (2024)
-
Dellepiane, Umberto, (2015)
- More ...
-
Stimulating the attractiveness of PFI/PPPs using public sector guarantees
Owolabi, Hakeem, (2019)
-
Risk mitigation in PFI/PPP project finance
Owolabi, Hakeem, (2019)
-
Sustainable construction practice in Nigeria: barriers and strategies for improvement
Akindele, Oluwaseun Enoch, (2023)
- More ...