A class of stationary random fields with a simple correlation structure
A stationary random field is often more complicated than a univariate stationary time series, since dependence for a random field extends in all directions, while there is only the natural distinction of past and future at any instant in a univariate time series. In this paper we start from a simple correlation structure, derive a class of stationary random fields with the simple correlation function and the simple spectral density function by using linear combinations of separable spatial correlation functions, and discuss a problem of embedding a lattice model into a continuous domain model.
Year of publication: |
2005
|
---|---|
Authors: | Ma, Chunsheng |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 94.2005, 2, p. 313-327
|
Publisher: |
Elsevier |
Keywords: | ARMA Correlation Embedding Rational spectral density Stationary |
Saved in:
Saved in favorites
Similar items by person
-
Characteristic properties of multivariate survival functions in terms of residual life distributions
Ma, Chunsheng, (1998)
-
Approximations to distributions of sample quantiles
Ma, Chunsheng, (1998)
-
Semiparametric spatio-temporal covariance models with the ARMA temporal margin
Ma, Chunsheng, (2005)
- More ...