A comparison of univariate methods for forecasting electricity demand up to a day ahead
Year of publication: |
2006
|
---|---|
Authors: | Taylor, James W. ; De Menezes, Lilian M. ; McSharry, Patrick E. |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 22.2006, 1, p. 1-16
|
Subject: | Energiekonsum | Energy consumption | Elektrizität | Electricity | Energieprognose | Energy forecast | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Theorie | Theory | ARMA-Modell | ARMA model |
-
Forecasting Long-Term Electricity Demand Time Series Using Artificial Neural Networks
Behm, Christian, (2020)
-
Aghaeifar, Roya, (2013)
-
Electricity consumption prediction using artificial intelligence
Čegovnik, Tomaž, (2023)
- More ...
-
A comparison of univariate methods for forecasting electricity demand up to a day ahead
Taylor, James W., (2006)
-
A comparison of univariate methods for forecasting electricity demand up to a day ahead
Taylor, James W., (2006)
-
Use of machine learning techniques to create a credit score model for airtime loans
Dushimimana, Bernard, (2020)
- More ...