A computational approach for real-time stochastic recovery of electric power networks during a disaster
Year of publication: |
2022
|
---|---|
Authors: | Inanlouganji, Alireza ; Pedrielli, Giulia ; Reddy, T. Agami ; Tormos Aponte, Fernando |
Published in: |
Transportation research / E : an international journal. - Amsterdam : Elsevier, ISSN 1366-5545, ZDB-ID 1380969-6. - Vol. 163.2022, p. 1-15
|
Subject: | Disaster response | Power restoration | Real-time decision making | Reinforcement learning | Katastrophe | Disaster | Humanitäre Hilfe | Humanitarian aid | Elektrizitätswirtschaft | Electric power industry | Entscheidung | Decision |
-
A simple yet effective decision support policy for mass-casualty triage
Mills, Alex F., (2016)
-
Resource planning in disaster response : decision support models and methodologies
Schryen, Guido, (2015)
-
Chang, Kuo-Hao, (2024)
- More ...
-
Martinez, Wilmer, (2021)
-
Optimal bunkering contract in a buyer–seller supply chain under price and consumption uncertainty
Pedrielli, Giulia, (2015)
-
Monte Carlo fictitious play for finding pure Nash equilibria in identical interest games
Kiatsupaibul, Seksan, (2024)
- More ...