A cost-sensitive ensemble deep forest approach for extremely imbalanced credit fraud detection
Year of publication: |
2023
|
---|---|
Authors: | Zhao, Fang ; Li, Gang ; Lyu, Yanxia ; Ma, Hongdong ; Zhu, Xiaoqian |
Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 23.2023, 10, p. 1397-1409
|
Subject: | Cost-sensitive strategy | Credit fraud detection | Extremely imbalanced modeling | Type II error | Betrug | Fraud | Wirtschaftskriminalität | Economic crime |
-
Imperfect accounting and reporting bias
Fang, Vivian W., (2017)
-
The cost of fraud prediction errors
Beneish, Messod D., (2022)
-
Corporate governance attributes in fraud detterence
Raziah Bi Mohamed Sadique, (2019)
- More ...
-
Wen, Shigang, (2023)
-
Li, Jianping, (2014)
-
A two-stage general approach to aggregate multiple bank risks
Zhu, Xiaoqian, (2021)
- More ...