A data-driven approach improves food insecurity crisis prediction
Year of publication: |
2019
|
---|---|
Authors: | Lentz, Erin C. ; Michelson, Hope ; Baylis, Kathy ; Zhou, Yujun |
Published in: |
World development : the multi-disciplinary international journal devoted to the study and promotion of world development. - Amsterdam : Elsevier Science, ISSN 0305-750X, ZDB-ID 185339-9. - Vol. 122.2019, p. 399-409
|
Subject: | Crisis | Early warning | Famine | Food insecurity | Prediction | Sub-Saharan Africa | Ernährungssicherung | Food security | Unterernährung | Undernutrition | Subsahara-Afrika | Prognoseverfahren | Forecasting model | Frühwarnsystem | Early warning system | Zentralafrika | Central Africa |
-
Gordon, Jessica, (2022)
-
Lybbert, Travis J., (2024)
-
Chapple, Alice, (2024)
- More ...
-
Machine learning for food security : principles for transparency and usability
Zhou, Yujun, (2022)
-
Machine learning for food security : Principles for transparency and usability
Zhou, Yujun, (2021)
-
A Data-Driven Approach to Robust Predictions of Food Insecurity Crises
Lentz, Erin, (2019)
- More ...