A Data-Driven Approach to Robust Predictions of Food Insecurity Crises
Year of publication: |
2019
|
---|---|
Authors: | Lentz, Erin ; Michelson, Hope ; Baylis, Katherine ; Zhou, Yujun |
Publisher: |
[S.l.] : SSRN |
Subject: | Ernährungssicherung | Food security | Robustes Verfahren | Robust statistics | Prognoseverfahren | Forecasting model |
Extent: | 1 Online-Ressource (58 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments October 6, 2018 erstellt |
Other identifiers: | 10.2139/ssrn.3381344 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Robust optimization approaches for the equitable and effective distribution of donated food
Orgut, Irem Sengul, (2018)
-
Dalal, Jyotirmoy, (2022)
-
A robust predictive density based on the saddlepoint approximation for M-estimators
Ronchetti, Elvezio, (1998)
- More ...
-
A data-driven approach improves food insecurity crisis prediction
Lentz, Erin C., (2019)
-
Machine learning for food security : principles for transparency and usability
Zhou, Yujun, (2022)
-
Machine learning for food security : Principles for transparency and usability
Zhou, Yujun, (2021)
- More ...