A deep learning method for optimal investment under relative performance criteria among heterogeneous agents
Year of publication: |
2025
|
---|---|
Authors: | Laurière, Mathieu ; Tangpi, Ludovic ; Zhou, Xuchen |
Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 326.2025, 3 (1.11.), p. 615-629
|
Subject: | (R) machine learning | Heterogeneous interaction | McKean-Vlasov equations | Neural networks | Stochastic graphon games | Utility maximization | Theorie | Theory | Neuronale Netze | Künstliche Intelligenz | Artificial intelligence | Agentenbasierte Modellierung | Agent-based modeling | Stochastischer Prozess | Stochastic process | Lernprozess | Learning process | Portfolio-Management | Portfolio selection |
-
Surrogate modelling of a detailed farm-level model using deep learning
Shang, Linmei, (2024)
-
Monaci, Marta, (2024)
-
Deep learning, predictability, and optimal portfolio returns
Babiak, Mykola, (2020)
- More ...
-
Optimal investment in a large population of competitive and heterogeneous agents
Tangpi, Ludovic, (2024)
-
Optimal bubble riding with price-dependent entry : a mean field game of controls with common noise
Tangpi, Ludovic, (2024)
-
Optimal bubble riding : a mean field game with varying entry times
Tangpi, Ludovic, (2025)
- More ...