A descent lemma beyond Lipschitz gradient continuity : first-order methods revisited and applications
| Year of publication: |
May 2017
|
|---|---|
| Authors: | Bauschke, Heinz H. ; Bolte, Jérôme ; Teboulle, Marc |
| Published in: |
Mathematics of operations research. - Catonsville, MD : INFORMS, ISSN 0364-765X, ZDB-ID 195683-8. - Vol. 42.2017, 2, p. 330-348
|
| Subject: | first-order methods | composite nonsmooth convex minimization | descent lemma | proximal-gradient algorithms | complexity | Bregman distance | multiplicative Poisson linear inverse problems | Mathematische Optimierung | Mathematical programming | Algorithmus | Algorithm | Schätztheorie | Estimation theory |
-
When polynomial approximation meets exact computation
Paschos, Vangelis Th., (2015)
-
Jolaoso, Lateef Olakunle, (2021)
-
An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions
Boţ, Radu Ioan, (2016)
- More ...
-
Nonconvex Lagrangian-based optimization : monitoring schemes and global convergence
Bolte, Jérôme, (2018)
-
Cohen, Eyal, (2025)
-
An old-new concept of convex risk measures : the optimized certainty equivalent
Ben-Tal, Aharon, (2007)
- More ...