A finite mixture modelling perspective for combining experts’ opinions with an application to quantile-based risk measures
| Year of publication: |
2021
|
|---|---|
| Authors: | Makariou, Desponia ; Barrieu, Pauline ; Tzougas, George |
| Published in: |
Risks : open access journal. - Basel : MDPI, ISSN 2227-9091, ZDB-ID 2704357-5. - Vol. 9.2021, 6, Art.-No. 115, p. 1-25
|
| Subject: | opinion pooling | finite mixture models | expectation maximization algorithm | quantilebasedrisk measures | Theorie | Theory | Messung | Measurement | Risikomaß | Risk measure | Statistische Verteilung | Statistical distribution | Experten | Experts | Algorithmus | Algorithm | Modellierung | Scientific modelling |
| Type of publication: | Article |
|---|---|
| Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
| Language: | English |
| Other identifiers: | 10.3390/risks9060115 [DOI] hdl:10419/258201 [Handle] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Model uncertainty and VaR aggregation
Embrechts, Paul, (2013)
-
On modeling left-truncated loss data using mixtures of distributions
Blostein, Martin, (2019)
-
Insurance loss modeling with gradient tree-boosted mixture models
Hou, Yanxi, (2025)
- More ...
-
Makariou, Desponia, (2021)
-
Tzougas, George, (2020)
-
Tzougas, George, (2020)
- More ...