A Generalized Derivation of The Black-Scholes Implied Volatility Through Hyperbolic Tangents
Year of publication: |
2022
|
---|---|
Authors: | Mininni, Michele ; Orlando, Giuseppe ; Taglialatela, Giovanni |
Publisher: |
[S.l.] : SSRN |
Subject: | Derivat | Derivative | Volatilität | Volatility | Optionspreistheorie | Option pricing theory | Black-Scholes-Modell | Black-Scholes model |
Description of contents: | Abstract [papers.ssrn.com] |
Extent: | 1 Online-Ressource |
---|---|
Series: | Argumenta Oeconomica ; 2022, Nr 2 (49), s. 23-57 |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 30, 2022 erstellt Volltext nicht verfügbar |
Classification: | C88 - Other Computer Software ; G10 - General Financial Markets. General ; C02 - Mathematical Methods |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Asymptotics of Forward Implied Volatility
Jacquier, Antoine (Jack), (2015)
-
Dynamics of the Implied Volatility Surface : Theory and Empirical Evidence
Marabel Romo, Jacinto, (2014)
-
A note on approximating the Black and Scholes call formula with hyperbolic tangents
Mininni, Michele, (2020)
- More ...
-
A note on approximating the Black and Scholes call formula with hyperbolic tangents
Mininni, Michele, (2020)
-
Challenges in approximating the Black and Scholes call formula with hyperbolic tangents
Mininni, Michele, (2021)
-
Challenges in Approximating the Black and Scholes Call Formula with Hyperbolic Tangents
Mininni, Michele, (2020)
- More ...