EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search
  • A globally and quadratically c...
  • More details
Cover Image

A globally and quadratically convergent method for absolute value equations

Year of publication:
2011
Authors: Caccetta, Louis ; Qu, Biao ; Zhou, Guanglu
Published in:
Computational Optimization and Applications. - Springer. - Vol. 48.2011, 1, p. 45-58
Publisher: Springer
Subject: Absolute value equations | Smoothing Newton method | Global convergence | Convergence rate
Saved in:
  • More details
Extent:
text/html
Type of publication: Article
Source:
RePEc - Research Papers in Economics
Persistent link: https://www.econbiz.de/10008925529
    • EndNote
    • BibTeX
    • Zotero, Mendeley, RefWorks, ...
    • Text
Saved in favorites
    Similar items by subject
    • Alternating and parallel proximal gradient methods for nonsmooth, nonconvex minimax : a unified convergence analysis

      Cohen, Eyal, (2025)

    • On geometric convergence rate of Markov search towards the fat target

      Tarłowski, Dawid, (2018)

    • On equivalent reformulations for absolute value equations

      Prokopyev, Oleg, (2009)

    • More ...
    Similar items by person
    • The SC 1 property of an expected residual function arising from stochastic complementarity problems

      Ling, Chen, (2008)

    • Parameter selection for nonnegative image matrix/tensor sparse decomposition

      Wang, Yiju, (2015)

    • The SC 1 property of an expected residual function arising from stochastic complementarity problems

      Ling, Chen, (2008)

    • More ...
    A service of the
    zbw
    • Sitemap
    • Plain language
    • Accessibility
    • Contact us
    • Imprint
    • Privacy

    Loading...