A hybrid machine learning model for forecasting a billing period’s peak electric load days
Year of publication: |
2019
|
---|---|
Authors: | Saxena, Harshit ; Aponte, Omar ; McConky, Katie T. |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 35.2019, 4, p. 1288-1303
|
Subject: | ARIMA models | Combining forecasts | Demand forecasting | Energy forecasting | Neural Networks | Regression | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Energieprognose | Energy forecast | Prognose | Forecast | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | ARMA-Modell | ARMA model | Nachfrage | Demand |
-
Rodrigues, Lucas, (2022)
-
Electricity consumption prediction using artificial intelligence
Čegovnik, Tomaž, (2023)
-
Supporting of manufacturing system based on demand forecasting tool
Kmiecik, Mariusz, (2022)
- More ...
-
Saxena, Harshit, (2010)
-
Status of Indian Women and Role of Legislation
Saxena, Harshit, (2010)
- More ...