A multi-stage stochastic programming approach in master production scheduling
Master Production Schedules (MPS) are widely used in industry, especially within Enterprise Resource Planning (ERP) software. The classical approach for generating MPS assumes infinite capacity, fixed processing times, and a single scenario for demand forecasts. In this paper, we question these assumptions and consider a problem with finite capacity, controllable processing times, and several demand scenarios instead of just one. We use a multi-stage stochastic programming approach in order to come up with the maximum expected profit given the demand scenarios. Controllable processing times enlarge the solution space so that the limited capacity of production resources are utilized more effectively. We propose an effective formulation that enables an extensive computational study. Our computational results clearly indicate that instead of relying on relatively simple heuristic methods, multi-stage stochastic programming can be used effectively to solve MPS problems, and that controllability increases the performance of multi-stage solutions.
Year of publication: |
2011
|
---|---|
Authors: | Körpeoglu, Ersin ; Yaman, Hande ; Selim Aktürk, M. |
Published in: |
European Journal of Operational Research. - Elsevier, ISSN 0377-2217. - Vol. 213.2011, 1, p. 166-179
|
Publisher: |
Elsevier |
Keywords: | Stochastic programming Master production scheduling Flexible manufacturing Controllable processing times |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Stochastic lot sizing problem with controllable processing times
Koca, Esra, (2015)
-
A multi-stage stochastic programming approach in master production scheduling
Körpeoğlu, Ersin, (2011)
-
Compromising system and user interests in shelter location and evacuation planning
Bayram, Vedat, (2015)
- More ...