A multicollinearity and measurement error statistical blind spot : correcting for excessive false positives in regression and PLS
Year of publication: |
September 2017
|
---|---|
Authors: | Goodhue, Dale L. ; Lewis, William ; Thompson, Ron |
Published in: |
Management information systems : mis quarterly. - Minneapolis, MN : Carlson School of Management, University of Minnesota, ISSN 0276-7783, ZDB-ID 405089-7. - Vol. 41.2017, 3, p. 667-684
|
Subject: | Multicollinearity | measurement error | M+ME | multiple regression | partial least squares | PLS | CB-SEM | false positives | Type I error | statistical power | variance inflation factor | VIF | path estimate bias | Statistischer Fehler | Statistical error | Schätztheorie | Estimation theory | Partielle kleinste Quadrate | Partial least squares | Kleinste-Quadrate-Methode | Least squares method | Statistische Methodenlehre | Statistical theory | Systematischer Fehler | Bias | Regressionsanalyse | Regression analysis | Statistische Methode | Statistical method | Multiple Regression | Multiple regression |
-
Reverse regressions, symmetry and test distributions in linear models
Dufour, Jean-Marie, (2022)
-
Correcting misclassification bias in regression models with variables generated via data mining
Qiao, Mengke, (2021)
-
Rigdon, Edward E., (2016)
- More ...
-
Marcoulides, George A., (2012)
-
Comparing PLS to regression and LISREL : a response to Marcoulides, Chin, and Saunders
Goodhue, Dale L., (2012)
-
Does PLS have advantages for small sample size or non-normal data?
Goodhue, Dale L., (2012)
- More ...