A multivariate Kernel approach to forecasting the variance covariance of stock market returns
Year of publication: |
March 2018
|
---|---|
Authors: | Becker, Ralf ; Clements, Adam ; O'Neill, Robert |
Published in: |
Econometrics : open access journal. - Basel : MDPI, ISSN 2225-1146, ZDB-ID 2717594-7. - Vol. 6.2018, 1, p. 1-27
|
Subject: | volatility forecasting | kernel density estimation | similarity forecasting | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Schätztheorie | Estimation theory | Aktienmarkt | Stock market | ARCH-Modell | ARCH model | Prognose | Forecast | Varianzanalyse | Analysis of variance | Korrelation | Correlation | Börsenkurs | Share price |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/econometrics6010007 [DOI] hdl:10419/195444 [Handle] |
Classification: | C53 - Forecasting and Other Model Applications ; c58 |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting the realized variance in the presence of intraday periodicity
Dumitru, Ana-Maria H., (2019)
-
Conditional variance forecasts for long-term stock returns
Mammen, Enno, (2019)
-
High frequency vs. daily resolution : the economic value of forecasting volatility models
Lilla, Francesca, (2016)
- More ...
-
A multivariate Kernel approach to forecasting the variance covariance of stock market returns
Becker, Ralf, (2018)
-
A Kernel Technique for Forecasting the Variance-Covariance Matrix
Becker, Ralf, (2010)
-
A Cholesky-MIDAS model for predicting stock portfolio volatility
Becker, Ralf, (2010)
- More ...